
JOURNAL OF COMPUTATIONAL PHYSICS 6, 1-16 (1970) 

A Practical Difference Scheme for 
Fokker-Planck Equations* 

J. S. CHANG AND G. COOPER 

Lawrence Radiation Laboratory, University of California, Livermore, California 94550 

Received July 28, 1969 

A practical finite difference scheme for initial value problems of Fokker-Planck 
equations has been studied. In addition to satisfying the conditions of convergence and 
unconditional stability, this scheme provides numerical solutions which preserve some 
of the more important intrinsic properties of the original partial differential equation. 
In particular, the solutions are non-negative, particle conserving in the absence of 
external sources or sinks, and exact representations of the analytic solution upon 
equilibration. Furthermore, coupled with variable mesh size, this scheme actually 
significantly reduces the number of mesh points required with no loss of accuracy. 

INTRODUCTION 

In the study of an infinite, isotropic, fully ionized plasma, one often requires 
numerical solutions of certain Fokker-Planck equations [I, 2, 3, 41 of the form 

au 1 a 
at= - - [B(x, t>u + ax> 9 $1 A(x) ax 

in the domain 0 < t < t, , 0 < x < co, with A, B, and C all positive functions 
of their arguments.l The quantity x usually represents a velocity (or momentum) 
variable and U(X, t) is the single particle distribution function in that space. 
Depending on the particular problem, B and C may or may not be functions of U. 
If it is desired to find the solution to the above equation for a selected class of 
initial conditions and for t, < teP. (& is some characteristic equilibration time), 
one of the many standard finite difference schemes in existence may be employed [5] ; 
by choosing sufficiently small time and velocity intervals, a stable, convergent 
solution to Eq. (1) will be obtained [I, 31. If, however, the Fokker-Planck equation 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
1 Physically the usual meaning of these functions are 4nA(x) dx = d% is the spherically averaged 

volume element, B(x, t) is the dynamic friction coefficient and C(x, t) is the dispersion coefficient. 

1 
0 1970 by Academic Press, Inc. 
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is only part of a larger calculation (e.g., a coupled many species problem) or one 
is limited by the size and speed of available computers, the standard numerical 
techniques may prove unsuitable. In this paper, we will elucidate some of the 
shortcomings of these methods and present a practical scheme for their correction, 
i.e., a scheme that will perit larger At and Ax with satisfactory accuracy and 
significant decrease in real machine time. 

The underlying objectives of any practical numerical scheme are the following: 
(1) large time and velocity steps, (2) accuracy and stability, and (3) preservation 
of any intrinsic properties implied by the Fokker-Planck equation. Clearly, one 
may not be able to accomplish all three simultaneously and completely; instead, 
we must strive to satisfy these requirements as best as compatibility allows. The 
criterion for judgement must be the sensitivity or degree of dependence of the 
physics on particular errors introduced by the numerical scheme. 

I. INTRINSIC PROPERTIES 

The structure of Eq. (1) along with certain properties of its coefficients dictates 
various properties which any exact solution must possess. These are all inter- 
pretable in terms of physical quantities and are consequently properties which 
we must consider when setting up our numerical scheme. 

We first show that the positiveness of the coefficient functions A, B, and C is 
sufficient to guarantee u(x, t) 3 0 as long as u(x, 0) 3 0. This property is, of course, 
mandatory for the interpretation of u as a probability density. To establish the 
nonnegative character of u we consider the following theorem: for Eq. (l), if 
for any t, there is a point x,, such that u(xO , ,, t ) - 0 and z&c, to) 3 0 for all other x, - 
then au/at /Z=I0 > 0. This is proven by noting that u is a local minimum at x0 , 
so that 

au 2 
ax 2-q = 0 and 2 

ax2 z=zo 
> 0. 

Then looking at Eq. (1) we see that since A and C are positive, 

au 
at 2+zo 

C(x, t> a2u > 0 
=A(x)si+ (2) 

which is the desired relation. Using this theorem plus the fact that since au/at 
exists, u must be continuous in time, we see immadiately that 

u(x, 0) > 0 =+ u(x, t) > 0, 
i.e., u must go through zero to become negative, but u(x, t,,) = 0 * u cannot 
decrease. 
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Another property we wish to demonstrate is the existence of a conservation law. 
From Eq. (1) we see that the quantity 

N= - 
s 

u(x, t) A(x) dx (3) 
0 

satisfies the equation 

which we may interpret physically as follows: the time rate of change of N is 
dependent only on the generalized flux, [Bu + C(au/ax)], at the boundaries. 
If, as is usually the case, the boundary conditions on u and au/ax are such that 
to make the right side of Eq. (4) vanish, then we have a truely conserved quantity. 
In most cases, 47&x) dx = d3x, and N turns out to be the total number of 
particles in the system. 

A third property of importance concerns the quasiequilibrium solutions (or 
equilibrium solutions). By quasiequilibrium solutions we mean a time dependent 
function u”(x, t) such that 

$ [lqx, t>a + C(x, t) g] = 0 (9 

and if zZ(x, t) = G(x), then it is the equilibrium solution. If Eq. (1) is linear, then 
the quasiequilibrium solution is 

u(x, t) = o1 exp [-f” a dy], (6) 

where (II is a constant of integration. 
In many problems the quasiequilibrium solution may be function of a slowly 

varying time dependent parameter, say 8(t), i.e., U(X, 1) = U(X, e(t)), and M/at = 0. 
Consequently (6) will be a fairly accurate first approximation to the solution 
of Eq. (1). For a complex problem,2 the various parts of the system may have 
widely differing time constants so that the solution of Eq. (1) may reach a quasi- 
equilibrium state and then develops adiabatically as the parameter e(t) proceeds 
to equilibrium. This is usually reflected in the fact that u is described by an 
equilibrium distribution with a time dependent temperature. For such problems, 
in order to study the energy transfer among different parts of the system3 some of 

2 For example, a system of mutually interacting particles which gives rise to a system of coupled 
equations each of which is of form of Eq. (1). 

8 This could be among different species of the plasma, or physical regions in coordinate space. 
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which may be in quasiequilibrium states, it is mandatory that a numerical scheme 
represent this quasi-equilibrium solution accurately. Otherwise, small energy 
exchange may take place due to numerical error, and experience has shown that 
these exchanges tend to be cumulative so that the entire character of the problem 
may change drastically. 

II. BASIC DIFFERENCE SCHEME AND PARTICLE CONSERVATION 

To develop a numerical solution for Eq. (l), we represent U(X, t) by the discrete 
set uj” = u(jdx, II At) where dx and At define the velocity and time mesh sizes. 
For convenience these are taken to be constant, though they may in general be 
variable, dxi and At, . In an effort to avoid all nonessential complexity and without 
loss of generality (at least in as much as what we want to discuss) we shall base 
our discussion on a commonly used difference scheme. The time derivative will be 
forward differenced, i.e., au/at = l/At(u n+l - ZP) and all the velocity (momentum) 
derivatives will be center differenced, e.g., 

a224 
- ax2 j = & (%,l - 2% + %-lb 

The resulting difference equation will be solved implicitly, i.e., the finite difference 
representation of the right side of Eq. (1) will contain @+I. The implicit method is 
preferred over the explicit because of its inherent advantage in stability. 

The standard way to set up a difference scheme for Eq. (1) is to rewrite it as 

au -=- 
at $gu+p+ G)$+cz$] 

a224 =f[au+B$+r, 
I 

and then do the differencing. This has the apparent advantage that the derivatives 
of B and C may be evaluated exactly in any difference scheme thus hopefully 
decreasing the truncation error for a given Ax. Unfortunately, as we shall show, 
this type of scheme does not guarantee particle conservation so is unsuitable for 
our practical purposes. 

To represent the fact that we are using an implicit scheme, we will write the u’s 
appearing in the right side of Eq. (7) as ~2, . These will be some linear combinations 
of u,- and u;+l depending on the particular implicit differencing scheme. We also 
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will use values of cr, /I, and y evaluated at time step n, though other options are 
available such as using time extrapolated values. Equation (7) is represented by 

This is defined for a set of j values from 0 to J, where J dx is the maximum velocity 
which is chosen large enough so that all z+,~ may be taken as zero. 

For the present purposes, we take the simple definition 

N” G i A&’ Ax (9) 
j=O 

for the number of particles. A more accurate representation of the total particle 
number integral (Eq. (3)) will not in general change the results. For strict conser- 
vation we require Nnfl = N” for all n. Looking at Eq. (S), we find 

Since 01, /3, and y are usually nonconstant functions of x and t, the right side of 
Eq. (10) in general will not vanish. There are two kinds of terms in this expression, 
the interior terms (j= l,..., J- 1) and boundary related terms (j= -1, 0, J, Jf 1). 
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On the other hand, the conservation equation (Eq. (3)) has only boundary terms. 
Consequently, even if approximate particle conserving boundary conditions were 
applied the present difference scheme still will not have particle conservation 
due to the interior terms which in effect are sources or sinks for particles. By 
expanding 01, p, and y in Taylor series we can show that the change in particle 
number per time step is proportional to @x)~. Assuming the boundary terms 
vanish, we will have the relation 

p+1 - N” = dt q A@, y, 22) 

where 

I@, y, fi) being the above integral. In a practical problem, when dx is very small 
(say dx/xmax < 10-3 the error indeed may be small and even change sign. But 
after reaching quasiequilibrium the error becomes monotonic, because then 
u changes very slowly. The accumulation of this unidirectional steady error will 
become significant.3 For academic problems this actually may be used as a practical 
guide to terminate the problem. But if this equation (Eq. (1)) is only part of a 
bigger system, this error will best be removed, due to the abundance of quasi- 
equilibrium regions. 

To achieve strict conservation without regard to dx or number of time steps, 
we will difference Eq. (1) as it stands. This is slightly less accurate in the sense 
that some derivatives which could be done exactly are approximated by a finite 
difference representation. However, a brief consideration of why the scheme of 
Eq. (8) did not conserve particles will show that the inconsistancy of evaluating 
the derivatives of B and C exactly while doing those of u approximately was the 
real culprit. Thus, the apparent increase of accuracy is somewhat dubious, at least 
when judged on the basis of this fundamental moment of U. Of course, as dx is 
made smaller and smaller, the answers obtained from Eq. (8) will tend to stay 
closer to the exact results. Reasonable values of dx can be obtained, though, 
which when used with the difference scheme to be presented give sufficient 
convergence, strict particle conservation, and other advantages. 

To difference Eq. (I) we define a generalized current F = Bu + C(&/ax). 
Then using a centered difference in velocity, we obtain 

& (u;+l - uj”> = -g+ (Pj+r,3 - f;j-1,2) 
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for our representation of the differential equation. It should be remarked that here 
we require f;ijfljg which means knowing 22i+1,2 . Since the C’s are defined only at 
the j’s, we have a certain amount of ambiguity in the definition of pjf1,2 . In the 
next section, we will exploit this fact to achieve some desired intrinsic properties 
for U. For the present, we just assume that the P’s are defined consistently so that 
Fj-1/2 = Fk+l12 ik=j-1 * 

From the difference equation above, we see that 

= F If112 - F-II, WI 

and this is the exact numerical equivalent of Eq. (4). Number conservation is 
obtained by imposing the boundary conditions F$,,, = 0 = F-l,2 .4 To the order 
of accuracy of the difference scheme, these are consistent with the conditions on 
the differential equation, i.e., as dx -+ 0, these reduce to 

[Bu + c(a4/~x)].3;o = [Bu + c(a4/~x)]e=.,,, = 0. 

The physical interpretation of the particle conserving boundary conditions is 
quite evident, i.e., no net current flow through the boundaries. Also, the fact that 
strict conservation holds regardless of the size of dx can be seen and is the main 
reason this type of scheme is so useful in a practical calculation.5 

III. NONNEGATIVE SPECTRUM AND EQUILIBRATION 

The usual difference methods for Fokker-Planck type equations, be they particle 
conserving or not, may produce negative U’S for values of dx used in a practical 
problem. This behavior appears in the large x portion of the spectrum and may be 
traced to the fact that the convergence of the difference scheme to the differential 
equation is determined by x LIX instead of dx. In order to treat high velocity 
source terms, as many practical problems require, we clearly need an alternative 
scheme. The most obvious is to change variables to x2 since x dx = $d(x2); 
however, a consideration of the number of d(x2) mesh points needed to represent 
the entire problem accurately shows that this is an undesirable alternative. We 

4 From now on we have implicitly assumed that the current vanishes at the boundary. This 
assumption simplities some of our discussions (and is more physical) which can always be extended 
to the more general cases. 

6 An analogous exploitation of differencing the divergence has been applied to an anisotropic 
plasma [S]. 
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choose, instead, to modify the difference equations in such a way as to eliminate 
this nonuniformity without having to use many mesh points. To obtain the desired 
modification, we look also at the equilibrium spectrum predicted by the numerical 
scheme since this has the same convergence problems. It turns out that by assuring 
proper equilibration we can prove that the spectrum remains nonnegative for all 
times as required. 

We base our arguments on the particle conserving scheme, Eq. (II), using a 
fully implicit representation, i.e., z2, = .;+I. In the generalized current, 
Fjw = [Bu + ww~)1i+1,2 9 we use a centered difference for the x derivative 
to get 

au n+l 
ax j+1/2 

'v & (24;::' - u;+,. 

This is expressed in terms of implicitly known values of u so no ambiguity exists. 
However, we also will require ~j”,::~ which is not known. The usual choice for this 
quantity is u:!:,~ N +(u$- + u;+‘) which can be shown to give rise to a second 
order accurate scheme in dx when used in Eq. (11). We now show that this choice 
gives rise to negative uj’s if dx is not small enough. 

Inserting the above definitions for ui+liB and au/ax li+1,2 into the expression for 
the current gives 

F j+l/Z = ( ; Bin+l,z + & C;;l,e) ~7:; - (& C;+1,2 - ‘2 By+,,,) u;+l. (13) 

At equilibrium (or quasiequilibrium), this goes to zero which means the spectrum 
satisfies 

(14) 

Now if for some j we have 

then it is clear that ni”,i’ and .;+I have different signs (B and C are positive) so 
one must in general be negative. This means that even though all of the uj’s are 
initially nonnegative, some of them will eventually change sign, certainly near 
equilibrium if not sooner. A precise statement as to when this occurs of course 
depends on the initial shape of u. We find that a localized, delta-function type 
input will immediately give negative u’s; this being probably the most pathological 
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case. However, even smooth functions (e.g., a flat spectrum) develop negative 
elements quite early. Thus, unless we are willing to use 

&<gZE for all j, 
3+1/2 

and this is much too strong a condition since B and C may be time dependent, 
a different scheme must be employed. 

To see how to eliminate the negative spectra, we compare the numerical estimate 
of the equilibrium with the exact result. From Eq. (6), we find that the latter is 
given by6 

(i+llh BQ) dy 

iAX C”Y> 1 
1 (15) 

which agrees with Eq. (14) through order (Ax)~ as long as Ax < C~+l,2/B~++l,2 . 
It is exactly the breakdown of this condition which causes negative equilibrium 
spectra; the numerical scheme overestimates the relative fall off of the spectrum 
to such an extent as to make it go negative. We, thus, must find a way to weaken 
this estimate. 

The approach we take is to note that it is consistent with the difference scheme 
to define u~Z;,~ = (1 - Sj) 24;:. + S&‘l f or any 0 < Sj < l/2, i.e., the only 
thing we know is that the (j + l/2) value is somewhere between the j and j + 1 
values. We now show that this parameter may be exploited to give proper equi- 
libration and nonnegative spectra. To see how the former may be attained, we note 
that the current is now given by 

so that the equilibrium spectrum satisfies 

W-1 
%+1 

-& CL12 - VT-w2 
-= 
Un+l 3 

& G-h,2 + (1 - h)B;+1,2 ' 

(17) 

OThis is under the assumption of vanishing boundary currents. 



10 CHANG AND COOPER 

We then chooses aj such that this ratio is exp(--dx B~++l,z/C~++l,B), the exact result. 
Defining wj = Ax B~+,,,/Ci”,l,2, we find 

sj+ l 
9 exp(wJ - 1 

which can easily be shown to be monotonically decreasing from l/2 to 0 as wj goes 
from 0 to 03. It may also be remarked that when this choice for u:?:,~ is used in 
a first derivative, the scheme continuously shifts from a centered difference 
(Sj = l/2) to a forward difference (Sj z 0). It may be asked, “Why not use the 
forward difference (Sj = 0) right from the beginning, since this will guarantee 
the positiveness of uj ?” The simple answer is given by formulas (15) and (17). 
Simple forward difference will not give convergence unless Ax < Cin,,,21Bj”,,,, 
for all j and this is precisely what we want to avoid. 

Putting the expression for 6, into the current and using this in Eq. (ll), gives 

- (Cin+l12 Wj + CLj2 Wjel exp w& u;+l+ C& W,,u,“_‘;‘], 
(19) 

where Wj = wJ(exp wj - 1). Now the nonnegative aspect of the solution may be 
proven directly from the structure of Eq. (19).7 

The above equation may be written as 

-A&i’ + ~&+l - Cju;-:’ = uj”, j = l,..., J cw 

with Aj , Bj , and Cj all 3 0. The boundary conditions are C,, = 0 = AJ . Applying 
the “back substitution algorithm”, assuming u:+’ = ey+‘$$ +fj”“, we obtain 

(21) 

Following [5] there exists a = At/(d~)~ such that 0 < e&+l < 1 for all j. Con- 
sidering the family of ejn+“s as functions of a and using the recursion relations (21), 
we can show inductively that ejn+’ > 0 and bounded for all j and a. 

Then if all ufn > 0, we readily see that f;” > 0 for all j since 

fi” = u,“e~+l/A, > 0. 

’ The following proof is a generalization of reference [5], p. 119. 
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Thus we find that 

remembering that A, = 0 * u;+l = f, > 0. This completes the demonstration 
that the present difference scheme gives nonnegative spectra. 

In summary, the preceeding discussions give us the following procedure for a 
numerical solution of the Fokker-Planck Eq. (1). 

1. Obtain the quasiequilibrium solution U of the ordinary differential 
equation (t = (n + 1) At is considered to be a parameter) 

i a - - [B(x, t) ii + C(x, t) g] = 0. 
A(x) ax 

Usually this will yield U in a closed form. But at the worst we can simply calculate 
formula (15) numerically, since we only require z&+~/& in step 2. 

2. Calculate 6;+l’s from the current condition 

[ 
(1 - &;+I) B” 3+1,2 + & CT;+,,,] ii;!: - (& Gin,,,, - S)+‘B&) ii;+’ = 0. 

3. Solve the following implicit difference equation by the back substitution 
algorithm. 

& hi”+’ - uj”) = hx 1 [(l - 6;“) By+,,, + & CT;,,,,] ui”,‘: 
i 

- [A (C:+l,z + Cj’&) + (1 - 6;‘;)Bi”-1,2 - 6;+‘Bi=,,,] .;+I 

Here we see that the extra calculations involved in getting Sj’s is insignificant 
as compared with the rest of the program. In some cases, the use of Sj’s actually 
results in a net saving in the amount of calculation required to obtain the difference 
coefficients (for example see Section IV). Consequently, with practically no increase 
in real machine time, we have succeeded in removing the strongest conditions 
on Ax and dt as required by conservation of particles, positiveness of solution, 
and accuracy of equilibrium solution. The subsequent freedom in choosing Ax 
and At as directed by accuracy alone will significantly decrease the real computation 
time. We have illustrated these points with two examples. 
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IV. THERMALIZATION OF FAST IONS IN A PLASMA 

As a simple application of the proposed difference scheme, we consider the 
slowing down of a charged test particle in a Maxwell-Boltzmann plasma. This will 
be described by linearizing the Fokker-Planck equation of Rosenbluth, MacDonald 
and Judd [2] assuming a singly ionized background plasma of density II, and 
temperature T. Replacing the velocity and time variables by the dimensionless ones 

M 112 
x=v kT t-1 and 

4me4 In I, 
r = Ml/Z(kT)3/2 6 

where M is the test particle mass (assumed equal to the mass of the plasma ions) 
and In n is the usual Coulomb logarithm, the relevant equation [l] is 

au 1 a -= -- 
a7 ~2 ax ( xGti+G$, 1 (0<7<co,0~x<co). (23) 

In this expression u is the distribution function of the test particle, assumed to be 
spherically symmetric, and G is given by 

G(x) = (+)1’2 [R(x) + pR (;)] 

with p2 the ion-electron mass ratio and 

R(x) = 4 l’ exp(-y2/2) dy - exp(-x2/2). 
0 

The initial condition for u is taken to be a delta function at some x0 corresponding 
to the introduction of the test particle into the plasma at a well-defined velocity. 
Then, the above differential equation describes the slowing down and subsequent 
thermalization of the particle to a distribution proportional to exp(-x2/2). 

To set up the difference scheme, we must determine the parameters i3$ defined 
by Eq. (18). In the present case, B = xG and C = G so that 

w, = Ax g= = Xj,l12 Ax 
1+1/z 

and thus 

s,+ l 
3 exp(w,) - 1 * 
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The difference equation then becomes 

u;+l - 24,” = --YA?- [flY$ - Fy-,,,I 
Xj”(AX)Z 

with 

and the boundary conditions 

With 10 < x0 < 30, it is found that Ax = 1.5 and LIT = 1.0 work sufficiently 
well when compared with any finer mesh or other method of calculation (e.g., the 
results of reference [l]). For larger Ax, the distribution function becomes somewhat 
distorted; the three constraints of number conservation, nonnegative u, and proper 
equilibration will of course remain true no matter what Ax is chose. 

For comparison, Eq. (23) was differenced according to Eq. (8) which represents 
the typical, unconstrained scheme. Using x0 = 25, we found Ax < .05 was 
required to eliminate negative values of the distribution function. With the 
threshold value Ax = .05, the equilibrium temperature was .3 % too low, while 
the total number of particles at the equilibrium time 7 N 500 was .2 % low and 
showing a systematic loss rate of (l/iV)(di’V/A~) N 10-5. The time evolution and 
spectral characteristics of this calculation were found to be in agreement with 
the practical scheme (using Ax = .15) to within 1%. Thus, as long as this Fokker- 
Planck equation is used in calculations where no times greater than about GOT,, 
are required, Eq. (8) would represent the solution with sufficient accuracy. However, 
using the practical scheme, we see that a factor of 3 in mesh size and computation 
time may be gained. Moreover, a wider class of problems may be handled since 
no restriction is placed on the length of time which the calculation runs. Finally, 
using procedures similar to those presented in the next section, a more general 
difference scheme using variable mesh sizes may be employed since now the large 
x behavior of the system is handled accurately. Thus, an even greater saving 
in time and number of mesh points is possible. 

‘v. COMPTON COOLING OF HOT ELECTRONS 

Although the above example is a linear partial differential equation, the proposed 
scheme applies equally well to nonlinear equations. Consider the problem of the 
nonequilibrium time evolution of a photon distribution due to Compton scattering 
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with an infinite, homogeneous Maxwellian electron plasma. Assuming isotropic 
scattering and in the nonrelativistic limit this process may be described by the 
nonlinear Fokker-Planck equation [6, 71 

(0 < t < co, 0 < k < a), (24) 

where u. = .67 barns, f = (Izc)~/~ f,(k, t) and f,(k, t) is the nonequilibrium 
photon distribution; k = hv, e,(t) and pe are the electron temperature and density, 
respectively. The total photon number N(t) and total photon energy E(t) can be 
found by 

and 

N(t) = 47r jrn k2f(k, t) dk 
0 

E(t) = 47~ f= k3f(k, t) dk. 
0 

(25) 

For the numerical solution of Eq. (24) the upper limit for k is approximated by km, 
which is sufficiently large so as to minimize the distortion of the spectrum. It was 
found that for the usual finite difference schemes [5], in order to obtain an accurate 
convergent and stable numerical solution k max must be very large and Ak must be 
small, consequently, a large number of mesh points was required. However, 
with the proposed practical scheme we may use nonuniformly spaced mesh points 
to great advantage (by saving as much as 20 times or more the number of mesh 
points with essentially no loss in accuracy). It should be noted that even with 
nonuniform mesh Aki the usual scheme will still have to satisfy the convergence 
condition 

and the resultant restriction on the smallness of Ak, . 
If we let h” = (kj , n At), Akj+li2 = kj+l - kj , and 

Akj = &+I 12 + Akj-I,, 
2 -9 

we obtain the implicit difference equation, 

f;+‘-fj” _ a 1 
At - c rlk. [ki4,&% - k&K+&1 3 3 
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and 

where cy = uOfe = const. The energy group positions ki are input parameters 
and nonuniformly spaced. The half point values fjn+l,z and f,“,::, will be calculated 
as follows 

fh2 = (1 - s;+>jxl + s;+f;: 

and 

fZ,2 = (1 - s;+l)f;;; + s;+y;+1, 

where S;+“s are to be computed at each time step from the quasiequilibrium 
solution f”. 

At any time t, the quasiequilibrium solutionfe is 

f” = 1 
C exp[W&)l - 1 (26) 

where C is some constant to be determined. For Compton scattering the total 
photon number N is a conserved quantity and for distribution (26) N is related 
to 9, and C by 

N = 8nea3 2 s. 
?L=l 

Hence, knowing N and 8,(t) at any instant in time we can compute C iteratively. 
Numerically, quasiequilibrium is achieved if Fjn,+,:, = 0, for all j, i.e., 

9 n+1/2 

--%--- (f;+l - "6") 
&+1/z 

+ [l + (1 - sq+l)f;+l + s;+fj”][(l - s;“)f;+,, + sg’lf;:“] = 0, 

and this quadratic equation in SF+l can be solved easily. As it turns out for this 
particular problem there is always one and only one positive real root satisfying 
0 < Sj < l/2, and this is the desired result. 

In the test problems, we have taken pe = 6 x 1O22 particles/cm3, At = 5 x lo-l1 set 
and 8, = 10,25,50 keV, while the initial photon spectra is composed of low 
energy lines of different intensity. The total energy of the system is held tied so 
that we may observe the cooling of the initially hotter electrons. For the above 
values of At and pe the hottest problem takes about 1200 cycles to reach equi- 
librium; using 20 mesh points we obtained convergence (the usual method would 
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take at least 400-800 mesh points in order to obtain the same accuracy). The time 
dependent energy exchange rates, when compared with the converged results 
for the usual method, are accurate to more than .5 % at all times and the equilibrium 
spectrum can be said to be exactly duplicated. Energy conservation is of course 
exact, since the energy gain by the photons is used to determine the energy loss 
of the electrons. 
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